Enzymatic creatinine assays have less interference than older Jaffe creatinine assays. Studies from leading clinical journals have shown that interference with Jaffe creatinine assays may lead to inaccuracies in estimated glomerular filtration rates that are clinically important, especially in children and neonates.¹

Diazyme’s Enzymatic Creatinine is intended for the in vitro quantitative determination of creatinine in serum and urine. The assay is cost effective and provides outstanding reagent stability combined with the added convenience of instrument specific packing for several major instrument families.

DIAZYME CREATinine ENZYMATIC ASSAY ADVANTAGES

- Accurate measurement of creatinine with enzymatic method
- Reduced interferences and no cuvette staining as seen in Jaffe method
- Assay is traceable to NIST material (IDMS)
- Measuring range: Serum: 0.14-13.56 mg/dL
 Urine: 0.14-141.25 mg/dL
- Liquid stable reagent, calibrator and controls requires no reagent preparation
- Wide range of instrument parameters available for simplifying implementation

REGULATORY STATUS

510(k) Cleared; EU: [CE IVD]
ASSAY SPECIFICATIONS

<table>
<thead>
<tr>
<th>Method</th>
<th>Enzymatic Assay</th>
</tr>
</thead>
</table>
| **Sample Type & Volume** | • Serum
• Urine
Sample Volume 8 μL |
| **Method Correlation** | Serum:
N = 55
y-intercept = 0.0643
Slope = 0.9467
R² = 0.9981

Urine:
N = 51
y-intercept = -0.0518
Slope = 1.0002
R² = 0.9968 |
| **Linear Range** | Serum:
0.14 - 13.56 mg/dL
(12 - 1200 μmol/L)

Urine:
0.14 - 141.25 mg/dL
(12 - 12500 μmol/L) |
LOD	12 μmol/L (0.14 mg/dL)
Calibration Levels	1-Point Calibration
Traceability	Standard traceable NIST's SRM 914a
Reagent On-Board Stability	Opened:
4 weeks when stored at 2-8°C |

Creatinine Assay Procedure*

| R1: | 270 μL
Sample: 8 μL |
| R2: | 90 μL
37°C
0
5 min
550 nm
10 min
A1
A2 |

*Analyzer Dependent

Parameter questions for Enzymatic Creatinine Assay should be addressed to Diazyme technical support. Please call 858.455.4768 or email support@diazyme.com

ASSAY PRECISION

The assay was evaluated according to Clinical Laboratory Standards Institute EP5-A guidelines. Four serum specimens were tested on a Hitachi 917 twice daily, in duplicates over 20 days.

<table>
<thead>
<tr>
<th>Serum Testing</th>
<th>Within-Run Precision (80 Data Points)</th>
</tr>
</thead>
</table>
| Mean mg/dL (μM) | 0.74 (65.4)
1.38 (122.3)
4.04 (357.5)
10.28 (908.7) |
| SD mg/dL (μM) | 0.015 (1.3)
0.015 (1.37)
0.029 (2.54)
0.015 (1.3) |
| CV% | 2.1%
1.1%
0.7%
0.1% |

<table>
<thead>
<tr>
<th>Serum Testing</th>
<th>Total Precision (80 Data Points)</th>
</tr>
</thead>
</table>
| Mean mg/dL (μM) | 0.74 (65.4)
1.38 (122.3)
4.04 (357.5)
10.28 (908.7) |
| SD mg/dL (μM) | 0.022 (1.9)
0.026 (2.29)
0.058 (5.11)
0.014 (12.4) |
| CV% | 3.0%
1.9%
1.4%
1.4% |

The assay precision was evaluated with urine samples with a modified EP10 protocol. Within-run precision; 21 replicates of commercial urine controls were tested. Total precision; 2 runs of each commercial urine control were performed consecutively for 5 days.

<table>
<thead>
<tr>
<th>Urine Testing</th>
<th>Within-Run Precision (21 Data Points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Mean mg/dL (μM)</td>
</tr>
<tr>
<td>SD mg/dL (μM)</td>
<td>0.1 (8.84)</td>
</tr>
<tr>
<td>CV%</td>
<td>0.36%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urine Testing</th>
<th>Total Precision (20 Data Points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Mean mg/dL (μM)</td>
</tr>
<tr>
<td>SD mg/dL (μM)</td>
<td>0.79 (69.8)</td>
</tr>
<tr>
<td>CV%</td>
<td>2.64%</td>
</tr>
</tbody>
</table>

ASSAY INTERFERENCE

Interference for the Diazyme Creatinine Assay was evaluated on the Hitachi 917. The following substances normally present in serum produced less than 10% deviation at the listed concentrations:

- Triglyceride: up to 1000 mg/dL
- Ascorbic Acid: up to 10 mM
- Bilirubin (Conjugate): up to 30 mg/dL
- Bilirubin: up to 40 mg/dL
- Hemoglobin: up to 500 mg/dL

The following substances normally present in urine produced less than 10% deviation at the listed concentrations:

- Triglyceride: up to 1000 mg/dL
- Ascorbic Acid: up to 10 mM
- Bilirubin (Conjugate): up to 40 mg/dL
- Bilirubin: up to 40 mg/dL
- Hemoglobin: up to 1000 mg/dL
